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Abstract-The problem of large deftections of an inelastic inextensional ring under external pressure is
considered. The material behavior is approximated with a bilinear stress-strain curve. The nonlinear two-point
boundary value problem which arises is solved numerically. It was found that the inelastic nature of the
material creates adistincllimit load which represents the buckling pressure. beyond which the response path is
unstable. As a result the buckling pressure of such a ring is imperfection sensitive.

NOTATION

E Young's modulus
E' post yield slope of bilinear eN curve
G normalized curvature
H horizontal force at any point in ring
R 3TTHRIO'n/~

M moment
Mo 0'0/~/6

Ai 2M/3Mo
P pressure

P•. ECYbuckling pressure = '4 Ii
Po O'o/IR
Px collapse pressure
Q 3TT7PR/20'u/
R ring radius
S mid-plane ring coordinate
s 2SI1TR
/ Ring thic_kn~ss_

u vector (H, V, M,6)
V vertical force at any point on ring
V 31TVRI0'0/7

Wo amplitude of initial imperfections
x,y cartesian coordinates
f, y 2(x, yl/1TR

a EIE'
~ displacement of ring at Y< I)
E strain
6 angle between normal and x-axis
I( curvature

1(0 curvature at first yield

~ ~P<
Po

0' slress
0'0 yield stress

INTRODUCTION

This paper deals with the buckling and post-buckling analysis of an inelastic ring in the large
deflection regime. The small deflection initial post-buckling problem was considered by
Carrier [1] (inextensional case) and by Naschie[2] (extensional case). The corresponding
dynamic problem has been solved by Simmonds [3]. The question of imperfection sensitivity of
the buckling pressure became a subject of controversy due to an erroneous solution by Ref. [4].
However, more careful analyses by Ref. [2, S] have shown that the buckling pressure for the
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external pressure case is insensitive to initial imperfections as shown by the positive slope of
the initial post buckling curve.

Although the above arguments and analyses are correct for large diameter: thickness ratio
(Vlt > 2(0), buckling experiments on long pipe (Dlt < 2(0) have repeatedly indicated contrary
results. Buckling results in complete collapse of the pipe. Also imperfections, such as ovaliza­
tion, have been shown to affect the value of the buckling pressure. Obviously the reason for
this discrepancy is the fact that for thicker pipes or rings the material cannot be assumed
elastic as in the case of the above references.

Timoshenko recognized the importance of this problem and in Ref. [6] considered the
response of an elastic ring with an initial imperfection. For practical design purposes it is
suggested that the critical pressure be taken to be equal to the value at which the first fiber of
the ring or pipe reaches yield. The conservativeness of this statement has not been examined
with a more detailed analysis.

This paper deals with the problem of collapse of a circular ring having an initial imper­
fection. The collapse of the ring is followed until two diametrically opposite points on the ring
touch. This analysis was motivated by the relation of this problem to the problem of the
so-called Propagating Buckle[7-1O] where a local collapse in a long pipe under external
pressure propagates flattening the whole pipe. This problem has direct implications in offshore
pipelaying operations. The purpose of solving this problem was to examine the dependence of
the post buckling behavior on the post yield material behavior. As a result a bilinear U-E curve
can be accommodated. The formulation of the problem in this way leads to a system of
ordinary nonlinear differential equations which are solved numerically using Newton's method.

THE PROBLEM

Consider a circular ring of radius R and thickness t, as shown in Fig. 1. The ring can have
an initial imperfection. For convenience this will be taken to be of the form

Wi = Wo cos 24> (1)

Equilibrium equations
The nonlinear equilibrium equations can be obtained by considering an elemental segment of

the ring as shown in Fig. 2

dH'dS= -p cos e,

dV P'dS = - sm e,

~~ = H cos e+V sin e.

(2)

H and V are the horizontal and vertical forces whereas M is the moment as defined by Fig.
2. S is the coordinate along the midsurface of the ring and e is the angle the normal at any point
makes with the x-axis.

Fig. I. Undeformed ring geometry.
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Fig. 2. Equilibrium of elemental ring section.

Geometry
Only the inextensional deformations of the ring will be considered, as a result

dx . 9dS = -SID ,

dy
dS = cos 9,

(3)

where (x, y) defines a point on the deformed ring relative to the Cartesian frame shown in Fig.
1.

Constitutive behaviour
For the bilinear approximation of the UoE behavior the moment curvature relationship can

be shown to be:

M = uot
2 (.!5..) f M < uot

2

6 KO' or - 6 '

where

d90 d9K=---'
dS dS'

E
a= E" (4)

K is the nonlinear curvature-displacement relationship for a curved beam. d901dS is the initial
curvature.

{
U t

2
} KLet Ko= KIM = _0_ and G =-.

6 Ko

With these definitions the moment curvature relationship becomes

G = M, for M:s 1,

(5)

(6)
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Nondimensionalizing eqns (2) and (4) appropriately, one obtains:

dH-=-Qcos eds '

dV Q'-=- Sin eds '

dM - -d'S = H cos 8 + V sin 8,

de = deo_'IT (B.) (ao)G(a M)
ds ds t E "

where G(a, M) is the solution of (6) with

G(l, M) = M,

G(a, M) = M for M S 1.

The boundary conditions are

H(O) = 0,

e(o) =0,

8(l) = 1T/2,

V(l) = O.

In addition (3) becomes

di . 8
ds =- SIn, x(l) =0,

d-
d~ = cos 8, y(0) = 0,

where

[O~s~l] (7)

(8)

s =2S/'lTR, x=2x/'lTR, y= 2Y/'lTR,

(9)
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(7) can be expressed in vector form as:

985

dud; = [(s, ~),

y = (11, ti, M, 9),

[O~ s os; I]

(10)

Equations (10) describe a set of four nonlinear ordinary differential equations in the form of a
two-point boundary value problem. Newton's iterative numerical method is used to solve for y.
The interval s E [0, I] is discretized into N discrete points where 26 s N s 50, depending on the
situation.

The convergence criterion used was as follows:

m~x \ujv+I'_ ujv'ls 10-4
•

J

The numerical method used is described in more detail in Ref. [II]. The solution of the
elastic small deformation linearized problem - Ref. [6] - was used as initial guess, y(O" to start
the iteration. Then the parameter Qwas increased by !:lQ and the solution at Qwas used as initial
guess for Q +!:lQ.

Linearly elastic case (a = 1)
Linearly elastic material behavior is obtained if a = I in (7). The procedure described above

is used to find the different configurations as a function of pressure (see Fig. 4). The ring was
assumed to have collapsed when (y(l),O) = (0,0). Figure 5 shows how the displacement
(non-dimensional) of the point (y(l),O) varies with pressure. The same stUdy was done for five
different values of the imperfection. The problem of collapse of an elastic ring with no
imperfection has been studied in detail .by Ref. [12], where the existence of solution is proved
both above and below PIP, = 1. In the same reference Newton's method was used to find the
deformed shape as a function of pressure. For collapse as defined above, PIP, =1.68. This
compares with a value of 1.75 found in our case. The error depends both on the mesh as well as
on the convergence criterion.

More recently Sills and Budiansky [5] looked at the "initial postbuckling" of a ring with no
imperfection, under external pressure. They showed that the buckling pressure is not imper­
fection sensitive. This was in disagreement with the results of Ref. [4]. The complete
pressure-displacement curves shown in Fig. 5 clearly agree with the conclusion of Sills and
Budiansky.

Pressure vs the volume change curves have also been drawn and have the same nature as
those of Fig. 5; as a result they are not included.

0= f.

E

;?/-
I

Fig. 3. Elastic-linear strain hardening material behavior assumed.
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Fig. 4. Collapse sequence of a circular ring.

o .1 .2 .3 !4 .5 .6
-6

Fig. 5. Complete post buckling behavior in elastic and inelastic case.
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Linear strain hardening case (a> 1)
For many metals a E (50,200) gives a reasonable fit to the U-E relation. If this range of a is

considered, then the pressure-displacement response changes drastically in nature. A distinct
limit load appears and the ring becomes unstable beyond this point. For a pressure controlled
problem (pressure increments 4Q) the solution had difficulty converging for points around the
limit point. Arbocz in Ref. [13], facing the same problem but using the double shooting technique,
successfully modified the equations so that increments of deformation were prescn'bed instead of
load. This enabled the extension of the curve beyond the limit point. The same idea is used in this
case but a difterent constraint is used.

From (3)

d-
d~ = cos 8, y(O) = O.

Suppose the constraint added is:

y(l) = 4, where 4 is to be prescribed each time.

Since displacement cannot be prescribed simultaneously with traction at a point, Q is
treated as a new unknown to the problem.
Since Q = const

dQ =0
ds .

Equations (7) then become

dH-=-QcosB
ds '

with B. C.'s

dV =-Qsin8
ds '

dM - -d'S = H cos 8+V sin 8,

dB dBo (R)(Uo) - ---=--11' - - G(a M) G(1 M)=Mds ds t E " ,

d-
~=COSB G(a,M)=M Msl
ds '

~=O
ds '

H(O) =0,

8(0) = 0,

8(1) = Tr/2,

V(l) =0,

y(O) =0,

y(1) = 4 (4 prescribed for each calculation).

(11)



988

In addition
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dX=-sin8 x(I)=O.
ds '

(12)

The calculation now proceeded in two stages. Using increments of Q (i.e. eqns (7)), the
pressure was increased to point k (see Fig. 6), a small distance below the limit point. The last
converged solution (i.e. solution at point k) was used as initial guess for the next calculation
where increments of displacement ~ were prescribed. Figure 6 shows in detail a typical
example of the curve around the limit point. Increments of displacement were used until
complete collapse of the ring. Figure 5 shows how the pressure displacement graphs change
with the introduction of linear strain hardening. A distinct limit point is present in each case.
The maximum pressure reached in each case is taken to be the buckling pressure. On collapse
some residual resistance to pressure remains in the ring. The minimum pressure occurs for
~ s 2/11' (collapse condition).

Figure 7 depicts a quadrant of the ring at different stages of collapse. The spread of
plasticity along the length of the ring is also shown. The region of maximum moment, (i.e. at
s = 0) goes plastic first, followed by the region at s = 1. As the deformation continues the two
regions spread inwards as shown in the figure. Figure 4 shows a typical collapse sequence of a
complete ring.

Figure 8 shows how the moment at s = 0 (point of maximum moment for all values of ~)

varies with displacement. It should be noted that no unloading occurs at any value of ~. This is
true everywhere along the ring. This fact helps simplify the numerical analysis considerably.
The variation of forces at s = 0 with displacement are shown in Fig. 9. Since these are the main
reacting forces for the external pressure they follow the pattern of the pressure behavior with
displacement ~.

The moment distributions around the perimeter of a ring quadrant just before buckling and
on final collapse are shown in Fig. 10. Clearly the maximum moment occurs at s = O. Similar
plots for the horizontal and vertical forces are shown in Fig. 11.

RESULTS AND DISCUSSION

The same geometric parameters examined for the elastic case in Fig. 5 are examined for the
inelastic case as well. The material parameters considered are a = 50 and (TolE = 3.5 x 10-4

• The
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Fig. 6. Detailed drawing of limit point.
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Fig. II. Force distribution just before buckling and on collapse.

results are plotted for comparison on the same figure (Fig. 5). The difference between the elastic
and inelastic cases is striking. Very soon after first yield occurs a distinct limit point is
developed in the load displacement path. The response past this limit point becomes unstable.
This limit load becomes effectively the buckling load of the ring. The value of the buckling load
is imperfection sensitive as can be seen from the figure. The post-buckling behavior does not
appear to be very sensitive to the value of the initial imperfection.

It is of interest to compare this behavior with that of the elastic case where, of course, the
post-buckling behavior is stable. Obviously the response in that case is not imperfection
sensitive. Looking at the collapse load in both cases it seems to be insensitive to the magnitude
of the initial imperfection. As mentioned above, the limit load is reached very soon after first
yield (limit load less than 2% higher than load at first yield). Clearly then the buckling load is
sensitive to the yield stress of the material. Figure 12 shows a numerical example of the
variation of the buckling load and generally the whole response with the yield stress (0'0).

Figure 13 shows how the post-buckling behavior is affected by the value of ex. ex represents a
measure of the inelastic deviation from the elastic slope. ex =I represents the purely elastic
case and ex = 104 represents what is practically an elastic perfectly plastic material behavior.
The effect of strain hardening on the buckling load is insignificant; on the other hand, the
post-buckling behavior which takes place in the elastoplastic regime is critically affected. For
the case considered in Fig. 13 ex =1.5 Can cause the post-buckling path to become unstable.
Although this represents only a specific case, it shows how sensitive the stability of the
post-buckling path can be to deviations of the O'-E behavior from the elastic modulus.

As mentioned in the introduction, Timoshenko[6] gives an expression for the small
deflection elastic response of an inextensional ring with an initial imperfection under external
pressure. He suggests that the collapse pressure of such a ring be taken to be equal to the
pressure which causes first yield. From expression (23) of Ref. [6] this pressure in normalized
form can be expressed as

where Px= collapse pressure, Po = uo(t/R), Pc = E/4(t/R)3 and ~ = V(Pc/Po).
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This expression is plotted in Fig. 14 for different values of the initial imperfection. On the
same plot results from the current analysis are included for comparison. Buckling pressure is
defined as the maximum pressure for which dp/d~ =O. As is evident from Fig. 14,
Timoshenko's criterion gives very good results for low values of ~ and small values of initial
imperfection. For large €and larger wolt the criterion is conservative. It should be pointed out,
however, that for large ~ the inextensionality assumption used by both Ref. 16) and the present
analysis is not justified and corrections for membrane deformations become necessary.
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